“Side Splitter Theorem”
Day 1 and 2 Notes
Triangle Proportionality Theorem (Side - Splitter Theorem)

- If a line is parallel to one side of a triangle & intersects the other two sides, it divides the two sides proportionally.

If $\overline{TU} \parallel \overline{QS}$, then $\frac{RT}{TQ} = \frac{RU}{US}$
Triangle Proportionality Theorem

Converse

- If a line divides two sides of a triangle proportionally, then the line is parallel to the third side.

\[\frac{RT}{TQ} = \frac{RU}{US} \]

If \(\frac{RT}{TQ} = \frac{RU}{US} \), then \(TU \parallel QS \)
Ex 1) Determine whether the statement is true or false. Explain your reasoning.

a) \(\frac{AB}{BC} = \frac{AD}{DE} \)

 Yes, side splitter thm

b) \(\frac{AB}{AC} = \frac{AD}{AE} \)

 Yes, \(\Delta \)s similar by AA

 So sides proportional

c) \(\frac{AB}{BC} = \frac{DB}{EC} \)

 No, mixed side splitter and sides proportional
Ex 2) Use the diagram to fill in the proportions below. \(\overrightarrow{NO} \parallel \overrightarrow{LM} \parallel \overrightarrow{JK} \)

a) \(\frac{JL}{LN} = \frac{KM}{?} \) \(\text{MO} \)

b) \(\frac{HJ}{HN} = \frac{?}{HO} \) \(\text{HK} \)

c) \(\frac{OM}{MH} = \frac{NL}{?} \) \(\text{LH} \)
Determine whether the information implies that MN || GH

No, MN is not parallel to GH because side splitter converse fails
Decide if enough information is given to conclude that $PS \parallel QT$. Explain

Ex 4)

\[
\frac{PS}{QT} = \frac{PQ}{QL}
\]

NO, side splitter and sides prop mixed

Ex 5)

\[
\frac{QL}{PQ} = \frac{TL}{ST}
\]

Yes, side splitter thm converse

Ex 6)

$\angle SPQ \cong \angle TQL$

Yes, corr $< s \cong \rightarrow \parallel$
Find the unknown value.

Ex 7)

\[\frac{4}{8} = \frac{x}{12} \]

\[8x = 48 \]

\[x = 6 \]
Find the unknown value.

Ex 8)

\[
\frac{3}{15} = \frac{x}{16}
\]

\[15x = 48\]

\[x = \frac{48}{15}\]

\[x = \frac{16}{5}\]
Parallel Lines & Proportions

If three or more parallel lines are intersected by two transversals, the parallel lines divide the transversals proportionally.

If \(r \parallel s \) and \(s \parallel t \), and \(l \) and \(m \) intersect at \(r \), \(s \), and \(t \), then

\[
\frac{UW}{WK} = \frac{VX}{XZ}
\]
Ex 9: What is the length of TU?

Lines parallel because corresponding angles congruent

\[
\frac{9}{15} = \frac{11}{x}
\]

\[9x = 165\]

\[x = \frac{165}{9}\]

\[x = \frac{55}{3}\]